Quantifying differences in the epidemic curves from three influenza surveillance systems: a nonlinear regression analysis

Related Staff:

Thomas EG, McCaw JM, Kelly H, Grant K, McVernon J, Quantifying differences in the epidemic curves from three influenza surveillance systems: a nonlinear regression analysis, Epidemiology and Infection 43(2): 427-439 (2015). doi:10.1017/S0950268814000764


Influenza surveillance enables systematic collection of data on spatially and demographically heterogeneous epidemics. Different data collection mechanisms record different aspects of the underlying epidemic with varying bias and noise. We aimed to characterize key differences in weekly incidence data from three influenza surveillance systems in Melbourne, Australia, from 2009 to 2012: laboratory-confirmed influenza notified to the Victorian Department of Health, influenza-like illness (ILI) reported through the Victorian General Practice Sentinel Surveillance scheme, and ILI cases presenting to the Melbourne Medical Deputising Service. Using nonlinear regression, we found that after adjusting for the effects of geographical region and age group, characteristics of the epidemic curve (including season length, timing of peak incidence and constant baseline activity) varied across the systems. We conclude that unmeasured factors endogenous to each surveillance system cause differences in the disease patterns recorded. Future research, particularly data synthesis studies, could benefit from accounting for these differences.