Treatment scale-up to achieve global HCV incidence and mortality elimination targets: a cost-effectiveness model. Nick Scott, Emma S McBryde, Alexander Thompson, Joseph S Doyle, Margaret E Hellard. BMJ Journal.doi.org/10.1136/gutjnl-2016-311504
Abstract
Aims The WHO’s draft HCV elimination targets propose an 80% reduction in incidence and a 65% reduction in HCV-related deaths by 2030. We estimate the treatment scale-up required and cost-effectiveness of reaching these targets among injecting drug use (IDU)-acquired infections using Australian disease estimates.
Methods A mathematical model of HCV transmission, liver disease progression and treatment among current and former people who inject drugs (PWID). Treatment scale-up and the most efficient allocation to priority groups (PWID or patients with advanced liver disease) were determined; total healthcare and treatment costs, quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICERs) compared with inaction were calculated.
Results 5662 (95% CI 5202 to 6901) courses per year (30/1000 IDU-acquired infections) were required, prioritised to patients with advanced liver disease, to reach the mortality target. 4725 (3278–8420) courses per year (59/1000 PWID) were required, prioritised to PWID, to reach the incidence target; this also achieved the mortality target, but to avoid clinically unacceptable HCV-related deaths an additional 5564 (1959–6917) treatments per year (30/1000 IDU-acquired infections) were required for 5 years for patients with advanced liver disease. Achieving both targets in this way cost $A4.6 ($A4.2–$A4.9) billion more than inaction, but gained 184 000 (119 000–417 000) QALYs, giving an ICER of $A25 121 ($A11 062–$A39 036) per QALY gained.
Conclusions Achieving WHO elimination targets with treatment scale-up is likely to be cost-effective, based on Australian HCV burden and demographics. Reducing incidence should be a priority to achieve both WHO elimination goals in the long-term.