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About this guide
This guide is intended as an introduction to interpreting the results of mathematical modelling studies in 
epidemiology. Such studies are increasingly used to support decision-making related to immunisation policy 
and the control of vaccine preventable diseases. The guide is designed to be read either in full or on a section 
by section basis, with these sections closely relating to the ordering of material in published modelling papers. 
Where it has been essential to use more technical terms to convey a precise message, these have been 
italicized to indicate inclusion in the attached glossary found on pages 24-26 of this document.

The guidance has been kept fairly general as we could not cover the large variety of specific details that 
appear in the literature. References for further reading are provided at the end of the document.
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Introduction to  
mathematical models

What is a mathematical model?
Dynamic mathematical models of infection aim to represent in a simplified manner the many processes and determinants 
involved in the acquisition, experience and ongoing spread of disease. The basic ‘SIR’ model (Figure 1) uses a series of 
ordinary differential equations to characterize epidemic behaviour through the transition of individuals between the 
susceptible (S) state and that of being infected and infectious (I). These events are not independent of each other, as the 
prevalence of infectious individuals (I) directly influences infection risk (in conjunction with the intrinsic ‘infectiousness’ 
of the specific pathogen in the population), represented here by β, which determines the rate of movement from S to I 
as shown in Figure 1. Once recovered (R), individuals are immune and no longer susceptible to infection, and collectively 
contribute to the resolution of an outbreak through increasing herd immunity. While simple in construction, such models 
and extensions have yielded helpful insights of relevance to infectious disease control over the past century.

Figure 1: The SIR model paradigm. Here γ represents the rate of recovery  
(1/duration of infection), while the dependence of infection risk on prevalence is  

indicated by the dashed curve.

The basic reproduction number (R0)
In a fully susceptible population, the number of secondary cases produced by a single introduced case can be calculated 
as β x S x the duration of infectiousness, a useful epidemic descriptor termed the basic reproduction number (R0). The 
basic reproduction number can be used directly to define the quantity known as the critical immunization threshold, 
or the proportion of the population that needs to be immunized to eliminate an infectious disease. For an infectious 
disease to spread in a population, infectious individuals must on average produce at least one secondary case, ie R0≥1. 
The variety between vaccine preventable diseases in terms of their infectiousness and the difficulty achieving elimination 
through vaccination is indicated Table 1. 

Disease Basic reproduction  
number (R0)

Critical Immunization 
threshold

Chickenpox 7 – 12 86-92%

Measles 11 – 18 91-94%

Mumps 7 – 14 86-93%

Pertussis 10 – 18 90-94%

Polio 5 – 7 80-86%

Rubella 6 – 12 83-92%

Smallpox 3 – 7 67-86%

Table 1: Approximate R0 valuesa and critical immunisation  
thresholds for common vaccine preventable diseases

a These values are primarily taken from 
ranges shown in Anderson and May 
(1991) for developed settings, with the 
smallpox range taken from House et. 
al. (2010). It should be noted that these 
are indicative only, with a wide variety 
of estimates published for each of 
these disease in more recent literature 
depending on model design and setting.



3

The critical immunization threshold for elimination
The critical immunization threshold (Pc) and R0 are related to each other through the following formula:

If, for example, each infected individual will on average infect 20 others (R0=20), then more than 19 of those 20 people  
need to be effectively vaccinated to ensure that an average of less than 1 contracts the disease (ie vaccine coverage of 
>95%). On the other hand, if on average only 2 people will be infected (R0=2), effective immunization of just over 1 out 
of every 2 individuals would be sufficient for disease elimination (ie effective vaccine coverage of >50%). 

These estimates are useful ‘ball park’ indicators, but make simplifying assumptions: for instance they assume that all 
individuals in the population are equally susceptible and infectious and don’t take into account epidemiological risk 
factors such as age. For instance calculations for a sexually transmitted infection such as human papilloma virus would 
need to take into account differences in sexual activity by age and gender with further stratification by partner numbers 
likely required. More significantly, it assumes that vaccines are 100% protective and that protection is life-long. In 
practice, infectious diseases and the vaccines designed to prevent them usually differ from these assumptions to a 
greater or lesser degree. 

Uses of modelling relevant to immunization and vaccine preventable 
disease control
In this document we focus on two major uses for mathematical modelling in relation to vaccine-preventable diseases. 

1. Prediction to support decision making in the face of uncertainty.  
Examples of this use include predicting the likely impact of an emerging infectious disease, or anticipating likely 
changes in disease burden following application of a new or altered immunization program. Increasingly, infectious 
disease models also form the basis of cost-effectiveness evaluations for vaccines and we provide some guidance in 
relation to the economic component of such evaluations.

2. Enhance understanding of infectious disease epidemiology.  
Examples of this may include applying novel methods to analyse disease surveillance data, and examining past 
trends in disease to more accurately characterise important disease processes or investigate impacts  
of past interventions. 

Such models frequently draw on many sources of information, ranging from basic biology, through to clinical trials and 
observational studies, as well as studies of human interactions and behaviour – all of which are relevant to understanding 
different aspects of infection spread. 

Key references
Anderson R and May R. (1992). Infectious Diseases of Humans. OUP Oxford.
Key early book that describes the details of models and relevant data with a strong focus on vaccine preventable diseases in the first half of the book.

Delva W, Wilson DP, Abu-Raddad L et. al. (2012) HIV Treatment as Prevention: Principles of Good HIV Epidemiology Modelling for Public Health 
Decision-Making in All Modes of Prevention and Evaluation. PLoS Med 9(7): e1001239.
A set of guidelines with a similar focus to these on the application of infectious disease models in the context of HIV.

Husereau D, Drummond M, Petrou S, et. al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ 2013 
346:f1049
The checklist included here is loosely based on the one provided as part of the CHEERS statement presented in this paper.

Vynnycky E and White R (2010). An introduction to Infectious Disease Modelling. OUP Oxford.
Adapted from an intensive 2-week course taught at the London School of Hygiene and Tropical Medicine, this is an introductory book aimed at 
readers without a strong mathematics background.
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Guidelines

Within the next few sections we provide background information and a guide as 
to what should be expected and what to look for when reading and interpreting 
modelling papers in relation to immunisation policy. The structure closely follows 
that of published papers and in addition each section contains a content summary  
for quick reference.

Key points
• The main purpose of models is often to capture dynamic effects of transmission and interventions that are difficult  

to measure in clinical trials.

• Models are suited to purpose – for some questions a very simple model will suffice, while in other situations more 
complexity will be required. 

• Look for discussion of points of difference between the model being used and those adopted in previous research  
on the topic.

• Look for discussion of generalizability. Basic biological parameters are often transferrable but population 
characteristics including surveillance data, health outcomes and costs may not be. 

• Readers should consider the feasibility of proposed interventions and assess whether modelled outcomes can be 
compared with routinely collected data.

Purpose and rationale for model development
As with any scientific study, the use of mathematical modelling methods to answer a particular question needs to  
be justified. Ideally a clear rationale for the use of modelling should be provided. Typically this rationale will relate to  
the need to synthesise evidence from a variety of sources or to investigate the consequences of new developments  
such as vaccines or emerging infections. In particular the ability to calculate herd immunity effects, whereby introduction 
of a vaccine programme leads to a reduction in disease in unimmunized individuals or non-targeted age groups, 
are often not available from empirical studies such as clinical trials. Models that explicitly represent transmission of 
infection between and among immunized and unimmunized individuals can estimate or predict these effects for 
new interventions. This ability to capture herd immunity effects is also important when attempting to estimate key 
epidemiologic quantities (e.g. duration of immunity or the reproduction number) as such estimates are often confounded 
by dynamic changes in disease epidemiology.

A more detailed consideration of the rationale also should involve a discussion of what the appropriate model type and 
structure is. This will be covered in more detail below but for example this might relate to the set of health states that 
adequately describe the natural history of disease but also differences within populations such as age or gender. Here 
the level of detail is likely to vary based on the available data, findings from prior work on the subject and pragmatic 
decisions around what elements are relevant to include. Ideally a model should be as simple as possible, provided that 
it contains all the important details (this principle is guided by Occam’s razor and sometimes referred to as parsimony) 
but this is easier said than done! However, depending on the question being considered certainly great variation in levels 
of detail can be expected. For instance if a novel strain of influenza emerged in another country there would be interest 
in determining how quickly it might arrive in Australia. A simple SIR-type model would likely give a reasonable answer to 
this question in a short amount of time. 

AIMS 
Purpose, scope and relevance to policy 
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Consider, however, the provision of human papilloma virus immunisation to boys in Australia. Here impacts on both men 
and women over a considerable time-frame are of interest. We also know that infection risks vary markedly by age and 
between population subgroups. Here, the high degree of heterogeneity in the rate of sexual contacts would need to be 
accounted for to avoid erroneous conclusions being drawn from the model. Therefore the appropriateness of the model 
should be discussed in relation to the complexity of the question being addressed. The downside of this from a reader’s 
point of view is that unlike most statistical analysis, there is wide variation in assumptions and model structures used 
even in relation to the same research question. Therefore it’s important for modelling studies to be contextualized in  
relation to earlier models, with points of difference clearly articulated. In general modelling approaches evolve over time to 
include more detail as the evidence base to inform them increases, and limitations of previous models become apparent.

Scope and generalisability
It’s worth recognizing that while many modelling studies of vaccine preventable diseases do have direct relevance to 
policy, others are also created for more theoretical or scientific purposes. For instance, models that do not stratify by 
age are probably not relevant to assessment of effects of a new vaccine, although insights from such models might 
ultimately develop into practical approaches to disease control. 

As a reader you are hoping to see a clear description of the purpose of the study, that takes into account the setting 
and scenarios of interest and the potential for generalisation. Very theoretical studies may demonstrate mechanisms of 
infection and immunity that are broadly generalizable, but the way these play out for disease control in specific contexts 
can vary. Vaccine effectiveness or cost-effectiveness studies are more likely to incorporate local data on disease burden, 
and consider feasible control strategies, but care needs to be taken in application to other contexts. For instance, the 
observed ‘real world’ impacts of childhood pneumococcal vaccine programs in different high-income settings have varied 
both in absolute and relative terms. Similarly, it would not be reasonable to directly transfer results from a model based 
on the United States’ population to a European country. That said, one particularly useful application of models is to 
shed light on the reasons why the same intervention may lead to different population level outcomes for clinical disease 
burden between countries and risk groups. 

Relevance to policy
Ideally modelling papers make the policy relevance very clear. Typically for instance, effectiveness and cost-effectiveness 
evaluations undertaken by agencies such as Public Health England have a very clear and direct relationship to 
immunisation policy. The models are expressly commissioned for this purpose, and developed collaboratively using the 
close links between modellers and policy makers in that setting. Relevance to policy includes discussion of the feasibility 
of proposed interventions and whether the outcomes being evaluated are measurable through surveillance and are 
of clinical or public health importance. For instance, many endemic infectious diseases spread primarily through mild 
or asymptomatic infection, but primarily cause serious invasive disease in certain age or risk groups – does the model 
consider and differentiate the impact of interventions on infection as opposed to severe disease?
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Key points
• There are fundamental differences between types of models, in particular between deterministic and stochastic 

models. The former are best suited to interventions in large populations, while the latter capture chance events and are 
more useful in small population and outbreak situations.

• Deterministic, compartmental models are most commonly applied in immunisation but there is growing use of 
stochastic models with some degree of individual-level variability. These are typically referred to as agent-based or 
individual-based models.

• Infectious disease models typically include whole populations (not just cohorts) and include some level  
of demographic detail (heterogeneity), with age the most commonly used variable used to stratify the  
population. Inclusion of births and deaths is typically required to capture disease epidemiology over decadal  
or longer time-frames.

Deterministic and stochastic models 
Mathematical models, as described earlier, represent the movement of individuals in the population between disease 
states. One important classification of these models is whether they are deterministic or stochastic. 

In a deterministic model, there is a pre-determined relationship between the model structure and inputs and the model 
outputs: the model will always provide precisely the same set of outputs if the inputs and structure are kept the same. 
So if the initial S, I and R values are left unchanged, and the transmission rate and duration of infection are the same, the 
model will return the same solutions each time it is implemented. A stochastic model, on the other hand, can produce 
different model outputs for the same model structure and inputs. Hence, it attempts to account for the variation 
that arises from unspecified and natural sources. Instead of pre-determined movements between states, a stochastic 
model samples from the range of possible outcomes (represented by pre-defined probability distributions). In the above 
example, even if the initial values for the S, I, R remain unchanged, a stochastic model will allow the number of infectious 
contacts and duration of infection to vary between individuals according to the chosen probability distributions. 

How does one decide on which approach is more appropriate? Well, deterministic models emphasize average effects 
and work best in large populations, where infection risks are fairly homogenous. Deterministic models are simpler to 
solve numerically, and are often efficient and valid representations of common endemic or established epidemic infectious 
diseases, including most vaccine preventable diseases. 

However, when population sizes are smaller or infection is rare, stochastic models become appropriate. This is because 
individual differences play a much greater role in what may happen when there are only a small number of cases. For 
instance with a newly emerged infectious disease, it is entirely possible that an imported case will lead to no secondary 
infections because of for instance limited contact with other people. Similarly, for a disease such as measles that is in an 
elimination phase imported cases in general do not lead to large outbreaks. This phenomenon, known as fade-out, can 
be captured by stochastic models, because they allow a range of probabilities that ongoing infection spread will occur, 
including the possibility of failure. This behaviour does not occur in deterministic models, which will always produce an 
epidemic provided the reproduction number is greater than 1.

 Why not always use stochastic models? In comparison to deterministic models, stochastic models are slow to run 
(particularly in large populations) and need to be run many times (usually 1000s of times) to investigate a single scenario 
with fixed parameters. This also raises challenges with presentation of findings, particularly if other forms of uncertainty 
need to be accounted for.

METHODS 
Modelling approach and description 
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Compartmental and individual-based models
Another important classification is the approach to representing the population. Compartmental, or state-based models 
group individuals in the population into states based on characteristics relevant to the infectious process (S, I and R),  
often stratified to include individual risk determinants such as vaccination status or age. These models are quick to 
develop, and work best when infection risks are more uniform. These models can easily be divided into strata (for 
each age group) but such models quickly become unwieldy once multiple strata are introduced. Standard childhood 
vaccination programs are typically well described by compartmental deterministic models.

Individual-based or agent-based models explicitly represent individuals potentially allowing for much greater 
differentiation in biology or behaviour. Such models are always stochastic and offer the most value when individual 
heterogeneity in transmission and the structure of interventions is important. For instance they allow individuals to be 
attached to groupings such as households or workplaces and can easily track features such as infection or vaccination 
history in great detail. Individual-based models tend to be considered for diseases such as pertussis, where they can 
more readily capture the effects of non-traditional vaccine programs, such as maternal or cocoon immunization, 
compared to compartmental models. However, model development time, the level of detail required in supporting data 
and the time required to run and adequately summarise simulations can all be much greater for individual-based models 
than comparable deterministic compartmental models. 

Representing population heterogeneity 
The simplest models assume that all members of a population are 
identical, and that they make contact with one another at random. 
Models developed to inform policy, however, generally need to 
represent additional population attributes such as age groupings, 
or vaccination status. The choice of population detail should 
depend on the specific research question and the data available to 
inform, or calibrate, the model.

Age-stratification of compartmental models can represent 
observed variation in susceptibility and infectiousness by age 
and allows for age-specific patterns of contact, such as increased 
mixing between school-aged children. This allows for a more 
accurate model of disease burden and risk, and allows exploration 
of targeted interventions, such as age-based vaccination 
schedules. Other features that might be considered include 
gender-differences (for instance in relation to sexually transmitted 
infections) or specific risk groups for transmission or disease. 
Individual-based models provide many more possibilities for 
representing heterogeneity, including networks of sexual contacts 
and spatial variation.

Depending on the time frame of the disease scenario, models 
may also incorporate dynamic aspects of population demography, 
such as births, deaths and aging. These processes are generally 
important in endemic diseases where the birth of susceptible 
newborns sustains infection through time. This allows models  
to capture the medium to long-term impacts of vaccination 
programs on population-level immunity, which is important for 
diseases such as pertussis where vaccination does not provide 
lifelong protection.
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Key points
• The major decisions in designing infectious disease models relate to categorising populations into distinct states 

relevant to the disease, determining allowed transitions between those states and including differences between 
subgroups or individuals that are influential in relation to transmission, disease outcomes or interventions.

• The susceptible-infected-recovered (SIR) model can be adapted to most infectious diseases with minor modifications 
to the basic structure.

• Vaccine interventions are often assumed to provide efficacy against infection leading to reductions in transmission. 
However, efficacy against disease and infection can differ and for some infections should be considered separately.

• Age-scheduling and duration of protection are important characteristics of vaccine-interventions, that need to be 
considered in model design in order to accurately compare alternative strategies.

• Models offer great advantages in terms of comparisons between multiple strategies. It is important, however, that 
these strategies are appropriately justified such as by outlining a pragmatic focus on feasible strategies or through  
a more aspirational focus on testing novel approaches to control.

Representing infectious diseases as models 
Pathogens such as viruses and bacteria can infect humans through a variety of routes (e.g. airborne, faecal-oral, sexually 
transmitted, vertical transmission, vector borne) and differ markedly in the natural history of disease and infectiousness 
they induce. A model must capture these major biological features in order to accurately reproduce known epidemiologic 
behaviour. This is one of the main challenges with modelling but it can be helpful to think about it in terms of three 
distinct (but related) sets of decisions.

Figure 2: Basic model structures for infectious diseases with lifelong immunity, chronic infection and temporary immunity

a) Model for a measles like infection b) Model for a HIV like infection

c) Model for a influenza or pertussis like infection

METHODS 
Infection, immunity and interventions
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1. Categorisation of the population into states
For an acute infection such as measles that induces life-long immunity (in the absence of vaccination), it is appropriate 
to consider that individuals are born susceptible, infected through exposure to others already infected in the population, 
and then recover with permanent immunity. This is the basis of the S-I-R model of disease (Figure 2a). In contrast, for 
a chronic infection such as HIV there is a possibility of being born infected (vertical transmission), and once infected, 
individuals remain so for the rest of their life. The appropriate model structure is an S-I model without recovery (Figure 
2b). For infections such as influenza or pertussis that produce only short-lived immunity, multiple infections over the 
course of life are possible, and a structure such as S-I-R-S is appropriate (Figure 2c).

2. Determining possible transitions
In between the model states are arrows that determine movements of people between disease states. These arrows are 
closely related to the natural history of disease but are applied to the whole population so as to model disease dynamics. 
In the S-I-R model, there are two movements allowed – susceptible people may become infected, while infected people 
may become immune. In the S- I model, only the first of these is possible and on clearing infection individuals are 
immediately susceptible, while for an S-I-R-S model, movement back to susceptibility is allowed to represent loss of 
immunity with time. 

Such a loss of protection may be primarily driven by antigenic drift, as in the case of influenza virus or loss of antibody 
with time, such as for pertussis following exposure to infection or vaccination. In addition to these primary transitions, 
we may allow additional movements, such as births and deaths to represent changes in populations in each state 
according to demographic change. 

3. Accounting for heterogeneity
Once a basic model structure is chosen, one must decide on the level of detail required, particularly in relation to who 
acquires infection from whom (WAIFW). For instance, a model of respiratory infection spread can assume fairly uniform 
transmission within the population while for a sexually transmitted infection variance in, for example, partner change 
rates are key determinants of risk. When routes of spread other than human to human contact are implicated, additional 
elements are required in the model, for example representing environmental exposure to a waterborne disease, or the 
intensity and infectiousness of bites from a relevant vector population such as mosquitoes or flies.

Beyond these fundamental choices on model structure, other issues that may need to considered include accounting 
for multiple strains of a pathogen (e.g. for pneumococcus or dengue) or interactions between related diseases such as 
varicella and zoster. The choice of model structure should reflect these features where they are relevant to accounting 
for epidemiology and the effect of interventions on disease. 

Representing vaccine interventions 
Vaccine efficacy, or direct protection, is a measure of the proportionate reduction in disease attack rates among 
vaccinated participants in a randomised placebo-controlled trial (RCT), compared with the unvaccinated group, over  
a defined period of follow up. It is calculated as:

A ‘perfect’ vaccine would immediately transition immunized individuals to the recovered (R) state and offer life long 
protection from disease (as we assumed when calculating the critical immunization threshold) but this is almost never 
the case. In practice, vaccine protection is rarely superior to immunity following natural infection and, the mechanisms 
by which immunization reduces disease risk are varied. Vaccines may protect against acquisition of infection (efficacy 
against susceptibility), or modify the disease course in infected individuals resulting in asymptomatic or subclinical 
infection (efficacy against pathogenicity). While either mechanism may lead to the same observed outcome of disease 
prevention in a short-term clinical trial, these forms of protection have very different implications for disease control in 
populations over the longer term. 
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Capturing indirect vaccine protection
Vaccines that prevent acquisition of infection are likely to lead to a reduction in the prevalence of infection that 
increases with increasing immunization coverage. As the total number of infections falls, so does the number of new 
incident infections in the unimmunised population, a phenomenon known as indirect protection. Indirect protection 
tends to peak in the years immediately following vaccine introduction, a phenomenon known as the honeymoon effect, 
before reaching a more stable value. If the duration of protection is only short-term or the infection prevalence is very 
high (as with rotavirus), there may be little or no impact of indirect effects. A final point is that indirect protection tends 
to delay infection (i.e. increases the average age of infection) and can have negative consequences if severe disease is 
concentrated later in life, such as with maternal rubella infection.

Vaccines that don’t perfectly protect against acquisition, may still modify the course of disease in ways that reduce 
infectiousness by decreasing (i) symptoms associated with transmission (e.g. sneezing, diarrhoea), (ii) peak viral or 
bacterial load, and/or (iii) duration of infectiousness. Such vaccines will also have indirect protection effects, extending 
the benefit of vaccine programs beyond the immunised group. This form of vaccine protection can be included in models 
as efficacy against infectiousness, with individuals with breakthrough infection posing a lower risk of infection to others 
than unimmunized infected individuals. 

Models of vaccine action should be developed in response to all available evidence of the biological mechanisms of 
protection so as to accurately capture indirect effects. In addition to clinical trials, challenge studies in animal or human 
models, carriage studies, observational studies of disease course in immunised or unimmunised individuals, or population 
implementation studies demonstrating indirect vaccine effects should be considered. 

Incorporating vaccine interventions in models
The mechanism(s) of vaccine action are incorporated in models as modifications to the rate of movement between 
compartments. Reduced susceptibility tends to be incorporated as reduced risk of moving between the S and I 
compartments (sometimes called “leaky” immunity) or by transferring immunised individuals directly to R (“all-or 
nothing” immunity). Over time, vaccine-derived immunity may be lost with movement back to the susceptible state 
incorporated. Reduced infectiousness is often captured by lowering the intrinsic infectiousness of immunised individuals 
(reducing β) or reducing the duration of infection (increasing γ). Efficacy against pathogenicity can be incorporated 
when clinical disease is specifically modelled as a reduced rate of movement into a separate ‘disease’ compartment. 

Vaccination programs in particular need 
coverage and timing of immunization 
to be tracked. This is usually achieved 
through stratification of the model by 
immunization status and by age when 
coverage is age-targeted. In the simplest 
models, coverage is incorporated as a 
division of births by immunization status 
but more realistic models for policy 
typically include age structure, so that 
immunisation can be applied consistent 
with local scheduling and timeliness. 
Various alternative schedules, including 
variations on age-scheduling, booster 
doses and catch-up campaigns can then 
be readily tested within such frameworks 
for comparison of their impacts on 
disease burden and their value for money. 

Figure 3: Schematic indicating how age-structure can be introduced through model 
stratification
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Using models for scenario analysis 
A key use of models is to explore alternative intervention scenarios, such as vaccination, quarantine or school closures. 
Comparisons of many scenarios are readily possible, allowing models to be used to rank the likely impact of a range of 
different interventions on a pre-specified outcome such as disease incidence. For instance, a model might be used to 
compare impacts of 1 or 2 doses of varicella vaccine given at different age-schedule points with the aim of determining 
which option is projected to be the best in reducing morbidity from VZV infection. Feasibility is an important 
consideration when scenarios are used to inform policy decisions, and implementation decisions used for the simulation, 
such as vaccination coverage or timing, should be clearly outlined. 

Although pragmatic, feasible alternative scenarios are often selected for simulation, it is not unusual for aspirational 
‘best-case scenarios’ to be considered. Whether achievable or aspirational, the reasons for exploring particular scenarios 
should be outlined and justified with a clear summary of the scenarios simulated provided in the methods section.

Scenarios can also be used to explore which assumptions best explain existing disease epidemiology or in an effort to 
reflect known uncertainty around model inputs. This process will typically involve a quantitative comparison between 
model simulations and one or more sets of data (for instance age-specific seropositivity to pertussis at 3 distinct time 
points). Within the methods section of a modelling paper, you expect to see the characteristics of these scenarios 
clearly described including such information as the population conditions, infection characteristics and control measures 
applied. Additionally, the way in which the simulations are compared with data should be clearly explained as this often 
differs between studies.

Case-study: Polio Immunisation
Polio clearly demonstrates the importance of vaccine mechanisms for population level vaccine program 
effects. The Salk inactivated polio vaccine (IPV) protects immunised individuals against development of 
paralytic polio, should they become infected with the virus, while still allowing ongoing infection and 
transmission. For this reason, IPV can only provide effective protection against disease in populations 
where vaccine coverage will be reliably sustained at high levels. In contrast, the Sabin oral polio 
vaccine (OPV) provides some measure of protection against acquisition, but more importantly controls 
virus replication and shedding from the gut, which is the site of infection. As such, it is able to limit 
transmission of any wild type virus strains that continue to circulate in a partially vaccinated population. 
The unfortunate down side of OPV is the risk of reversion of attenuated vaccine strains to neurovirulent 
forms, resulting in observed cases of vaccine associated paralytic polio and continued circulation of 
vaccine-derived virus in the environment.

Box 1: Differential impacts of vaccines on transmission and disease in respect to Polio. Additional complexity relating to 
OPV-strain transmission is not shown.
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Key points
• Models typically make use of a number of assumptions about how transmission interventions work. Ideally, each 

assumption is justified in terms of good quality evidence but at the very least, points of difference from existing work 
should be mentioned and the evidence underlying these decisions presented.

• Most inputs to models are imprecise making it important to reflect related uncertainty in key outcomes. This is 
typically done through one-way or probabilistic sensitivity analysis and may be supplemented by scenarios comparing 
impacts of alternative model assumptions.

• A further level of robustness can be added by applying one model to datasets from multiple settings or multiple 
models to data from a single setting. This approach has some similarities to meta-analysis but is time-consuming and 
rarely applied in practice.

Deciding on key model assumptions 
Designing a model involves deciding which elements are most crucial for capturing the disease epidemiology and the 
effect of interventions in relation to the research question. There are two key processes here – firstly, details that 
appear unimportant for the research question are excluded altogether (e.g., gender is often not considered in models of 
respiratory transmitted infections). Secondly, each included detail must have a precise quantitative definition within the 
model, even though existing knowledge may only partially inform these choices.

Ideally, each such decision and related assumptions should 
be identified and justified with reference to evidence. 
Wherever possible, this evidence should be directly relevant 
to the population and disease under study and based on a 
valid study design or synthesis of such evidence. In addition, 
the way information is presented in such literature may 
not match the model structure and timescale and require 
transformation: for instance study data might provide the 
proportion of individuals who became seronegative to a 
given antigen over a decade, whereas a model might need 
to implement this as an annual rate. Where good quality 
evidence is not available, expert opinion or simple and 
general comparisons (cf. Occam’s razor) can still be useful, 
particularly in regard to identifying potential policy options 
with poor outcomes. For instance, impacts of border 
screening on pandemic influenza were quickly identified 
as being relatively ineffective despite very little empirical 
evidence being available.

As models often build on previous modelling studies, 
it is typical for significant detail to be provided only for 
assumptions that are seen as contentious or different  
from previous work.

METHODS 
Model assumptions, structure and uncertainty
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Dealing with uncertainty in model assumptions
Often, there is considerable uncertainty regarding certain modelling decisions, either due to a lack of data or multiple 
imprecise data sources that may give conflicting answers. If an objective approach to consideration of uncertainty is 
not taken, there is potential for bias in favour of “desirable” outcomes, analogous to publication bias in other areas of 
medical science. As part of the sensitivity analysis section of modelling papers, there should be consideration of such 
uncertainty through one or more of the following techniques:

• Many simulations for a single set of values (stochastic models); this is particularly useful when individual variation is 
important, such as in spread of a newly emerged infection to other countries.

• Comparison of model outcomes when a given input assumption is varied over a range (defined, where possible, by 
data or expert opinion); for instance a case-control study may have been used to estimate vaccine effectiveness in 
the range 40%-70%. This uncertainty should be explored by reporting model outcomes across this entire range, 
rather than focusing only on for example the mid-point. 

• Probabilistic sensitivity analysis, where many input values are simultaneously sampled from probability distributions, 
producing a “cloud” of results consistent with input uncertainties; for instance this is used in economic evaluations 
to show the proportion of simulations that could be considered cost effective for varying cost-effectiveness 
thresholds.

• Comparisons of extremes: where contentious parameters are alternately set to values that are favourable and 
unfavourable to an intervention, to assess the robustness of outcomes, particularly those with clear policy relevance 
such as economic evaluations. For instance, one might compare a situation where all vaccine related parameters 
(efficacy, coverage, duration of protection) are set to minimums against where they are set to maximums to see how 
this influences overall impacts on disease burden or value for money. 

Inclusion of such examples of uncertainty or sensitivity analysis indicate that the uncertainties have been considered 
in a meaningful and robust manner. In some cases, the actual model structure may be in some doubt (for instance to 
what extent is naturally derived immunity important in describing the epidemiology of human papillomavirus infection?). 
In such circumstances, comparisons of alternative model structures can be conducted. Such comparisons can help 
to exclude structures that do not describe existing data well and suggest which structures are most appropriate. In 
circumstance where several model structures describe the data well, such findings can provide an impetus to further 
empirical research to inform the correct choice. Another application of this idea is to take several differing models and 
use them to investigate the same question as another way of assessing robustness (this approach has been widely 
applied in the HIV field and to a lesser extent with subjects such as rotavirus vaccination).
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Key points
• Data sources and their relation to model inputs (and sometimes outputs) should be clearly outlined within papers, 

ideally through a parameter table that provides descriptions, values and references of sources for the data.

• Calibration and validation are approaches for constraining model outputs to observed data and testing the predictive 
validity of the model respectively.

• Some form of calibration and validation is required in assessment of predictive models.

Description of data sources for characterization of the population, 
epidemiology and interventions 
Models of vaccine preventable diseases make use of a variety of data sources, primarily to inform model inputs, but also 
for use in directly calibrating or validating models (described in more detail below). Typically data sources are a mix of 
estimates provided by the literature (for instance vaccine efficacy as estimated in clinical trials), population information 
such as birth and death rates sourced from national statistics offices and then more disease specific information such 
as notification, morbidity and mortality data. Data sources such as serosurveys or pathogen-carriage surveys (e.g. 
meningococcal disease) are often important for establishing dynamics of infection, particularly where reportable disease 
cases represent a small and biased subset of infection exposures. For instance, most hospitalized cases of pertussis will be 
in young infants but infection is much more widely distributed across the age spectrum, as can be seen from serosurveys. 

In terms of presentation, each data source should be clearly described, and its use in the model explained. This 
information is often briefly summarised in a parameter table, where parameter names, values (+ranges) and sources 
are listed. Ideally this table should be supplemented by a discussion of key assumptions and justification of choices 
of source data in the text. Absences of clear descriptions of sources and parameter values either in the main text or 
supporting information should be cause for concern in terms of validity of assumptions. A more subtle concern is in 
regard to source referencing, where not infrequently the references will point to earlier modelling papers, rather than 
primary data. This practice may be justified (e.g. building on previous work by the same group) but can be a sign that 
epidemiological assumptions have not been carefully reviewed.

Table 2: Example of parameter table in relation to waning of immunity after measles immunization (adapted 
from Wood, JG et. al. Vaccine. 2015. 33(9):1176-81 doi: 10.1016/j.vaccine.2014.12.071)

Parameter Symbol Value (Range) Source

Waning rate  
(after one dose)

ω1 1/50-1/20 per year [7,20]

Waning rate  
(after two doses)

ω2 1/200-1/80 per year [7,10,20]

Waning rate  
(immunity from  
infection)

ωn 0 Absence of good evidence to contrary

Proportion  
seroconverting  
(1st and 2ⁿd dose) 

q1, q₂  q1 = q₂ = 0.97 Consistency with serosurvey values for 1-4 
year olds and similar to estimates from recent 
MMR/MMRV trials [21]

METHODS 
Comparisons with data (inputs, outputs)
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Comparing models with data: Validation and Calibration 
Some kind of comparison with data is essential in any policy relevant modelling study, although this is harder with 
emerging infections due to the lack of prior observations. Typically these comparisons are divided into two stages with 
different purposes. Model calibration is a process by which model outcomes are compared with data, with the aim of 
refining model inputs and/or structural assumptions so as to describe the data as well as possible (without over-fitting). 
For instance, one might aim to have the model as closely as possible reproduce the incidence of zoster disease in 
Australia, by altering the age-specific rates of zoster reactivation within the model. This process is essentially similar to 
statistical procedures such as regression whereby a line of best fit is produced – in this case it’s just that the underlying 
model is a bit more complicated. Alternatively a more qualitative approach that aims to match to certain major features 
of disease epidemiology, such as epidemic cycle lengths in the case of pertussis might be used as a constraint to guide 
appropriate sets of model inputs.

Validation on the other hand aims to test the ability of models to predict disease outcomes not used in the calibration 
process. For instance, a model of varicella infection in Australia might be calibrated to data prior to the introduction of 
the vaccine and then simulated forward in time to see whether it reproduces post-vaccination changes in disease burden. 
Validation may also be qualitative or use more formal quantitative approaches (e.g. cross-validation) but given models are 
often intended for use in a predictive manner, some form of validation of model predictions should usually be performed.
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Key points
• The results section should present in graphs and tables both the main outcomes of the paper and intermediate  

results such as the model validation and calibration.

• When many scenarios are being compared a summary of results across all strategies should ideally be shown  
before focusing on a subset for more detailed presentation.

• Uncertainty around results to be presented through, for instance, Tornado plots for one-way analysis and approaches 
such as 95% uncertainty ranges for multivariate analysis.

• Where assumptions are quite controversial, findings should be compared with those using alternatives assumptions  
in a scenario analysis.

Main outcomes and scenarios 
The presentation of results will vary depending on the main purpose of the paper. For instance if the study aims to 
describe existing disease epidemiology, the results section should focus on presenting fits of different model scenarios 
to the data and assessment of the quality of these fits. If, for example, determining the duration of vaccine-derived 
immunity to pertussis is the main focus, one might expect to see tabulated estimates of this parameter for comparison 
models that make differing assumptions about how mild infections contribute to transmission. If the focus is on 
assessing a new vaccine intervention, then scenarios will be used to explore how variations on implementation of this 
intervention compare in terms of for example, incidence of disease requiring hospitalisation. 

Either within the results section directly or supporting information, graphs of how key outputs (typically disease 
incidence and/or morbidity or mortality) are projected forward in time should be shown for at least a key set of 
strategies. Often these results are presented over a timeframe of many decades and it is important to remember that the 
validity of these predictions will decrease over time due to changes in population structure, behaviour and maintenance 
of immunity. In some cases study authors will focus on results at a post-vaccine “equilibrium”, without alerting readers to 
the fact that this does not occur until several decades into the future. Both authors and readers should focus on more 
immediate model predictions (within the next decade) as these are likely to be more robust, while considering potential 
longer term effects including unintended adverse consequences of interventions. 

We comment more extensively on economic evaluations at the end of this document but note that as these are often 
most closely relevant to policy, there is an additional need for presenting relative contributions to health benefits gained 
and costs saved, as well as impacts of uncertainty in these analyses. Often there can be a tendency to single out a “base-
case” intervention. This can be quite reasonable - for instance there is one intervention strategy that is more feasible 
and more likely to be acceptable to policy makers than the rest. Often, however, it is better for results from all strategies 
to be presented briefly. This process provides the rationale for selection of favoured strategies for more detailed 
presentation, having demonstrated which are the most efficient or effective in relation to key outcomes.

Sensitivity analysis
The effects of uncertainty analysis can be presented in a number of ways. Generally this involves choosing a set of 
input values, generating outputs of interest (such as disease incidence, mortality or costs) then repeating the process 
several (or many) times with different sets of input values. Sensitivity analysis aims to determine which of the uncertain 
inputs have the greatest influence on model outputs, and our subsequent conclusions. In one-way sensitivity analysis, 
a single input is varied at a time, with output sensitivities then summarized through tornado plots or more complex 
measures such as partial correlation coefficients. Tornado plots represent both the direction (increase or decrease) and 
relative magnitude of changes in outcomes that result from one-way sensitivity analysis on a series of inputs, providing a 
comparative overview of which inputs are most influential (see Figure 4 below for an example).

Multivariate approaches, however, are preferred for characterizing combined uncertainty around a given outcome. A 
full understanding of input-related uncertainty involves establishing probability distributions for each parameter and 
then using a Monte-Carlo sampling approach to simultaneously draw input values from each distribution. Outcomes 
are then generated by running the model, typically 1000s of times, to generate a cloud of results representing the 

RESULTS 
Presentation of results and uncertainty 
(parametric, methodological etc.)
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Figure 4: Example of tornado plots combined with scenario analysis used to assess sensitivity of predictions of varicella morbidity under 
various vaccination options (source: Gao, Z et. al. Epidemiol Infect. 2015 143(7):1467-76. doi: 10.1017/S0950268814002222)

resulting uncertainty in model outputs. Referred to as probabilistic sensitivity analysis, this approach is commonly used 
in sensitivity analysis for cost-effectiveness modelling. In some cases, it may be combined with comparisons with data 
through a calibration process in order to refine predictions of uncertainty. An example of such refined uncertainty is 
presented in Figure 5a below, where probabilistic sensitivity analysis was first conducted using millions of simulations, 
before these were constrained to reproduce key features of pertussis epidemiology in Australia. Only those sets of 
inputs that achieved this were retained, leading to a refined set for use in further analyses.

Scenario analyses also form an important way to assess uncertainty in model outcomes. For instance the impacts of 
pneumococcal conjugate vaccines on all-cause otitis media were unclear from vaccine trial results but influential in terms 
of cost-effectiveness estimates. In Figure 5b below, impacts on health and cost savings for the 10 and 13-valent vaccines 
are shown over a wide range of possible effects on these outcomes, while representing combined uncertainty for other 
variables. This kind of approach can also be used to test sensitivity of the model to design decisions, such as the number 
of different disease states included and allowed movements between them. For instance one might compare the impact 
of a vaccine program with lifelong durations of immunity (S-I-R type model) as opposed to an immune duration of 10 
years (S-I-R-S type model).

Figure 5: Examples of probabilistic sensitivity analysis: (a) modelled incidence of pertussis infection in Australia, where plausible variation 
in inputs was used to generate millions of simulations, from which a subset consistent with observed features of pertussis epidemiology 

in Australia were retained; (b) comparison of 10-valent and 13-valent pneumococcal vaccines as a function of their efficacy against otitis 
media, incorporating multivariate uncertainty relating to other inputs [sources: (a) Campbell, P et. al. Vaccine 2015 (in press) doi: 10.1016/j.

vaccine.2015.09.025, (b) Newall, AT et. al. Vaccine 2011. 29:8077–85 doi:10.1016/j.vaccine.2011.08.050].
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Key points
• Model results need to be discussed in the context of existing modelling and empirical research on the topic.

• Models are simplifications of reality and should not be expected to match all relevant data sources. However, in 
relation to the primary outcomes from the model, it is important to evaluate how these compare with other data 
sources and studies.

• Uncertainty around key outcomes should be highlighted in the discussion. If a study focuses entirely on point 
estimates of outcomes instead of ranges you should be sceptical.

• A frank and detailed discussion of limitations of the model is important. Ideally this should go beyond just  
noting limitations to discuss how results would be expected to change if other assumptions or additional details  
had been included.

Model results in context 
Like all scientific studies, the discussion needs to place modelling results in context. Typically there is a body of existing 
modelling work and then various empirical studies such as trials, observational studies and routinely collected data 
that need to be discussed. This can be somewhat complex as a model will generate many results and some of them will 
not match closely with empirical data. These issues are typically covered in the limitations section but it is important 
to remember that it is not generally the goal of models to capture all details of disease epidemiology accurately. For 
instance a model of a new immunization program may not be designed to capture seasonal fluctuations in incidence but 
still accurately assess the average impact on disease incidence. Such a model would be perfectly fine for use to estimate 
the overall change in the burden of disease and direct costs associated with disease morbidity. However, it would not 
be able to accurately assess impacts on hospital surge capacity and if this were an important consideration, would need 
revision to include seasonal components. 

For studies that aim to inform policy, additional discussion of the level of realism and uncertainty in findings is very 
important. Input values, the choice of model states and possible transitions and the limitations of existing data all 
contribute to uncertainty in the main outcomes from models. From a policy perspective it is important that the 
implications of variation around the main findings are discussed. It could be for instance that the base-case analysis  
and the majority of simulations support introduction of a new vaccine program but that a sizeable majority of model 
outputs (say 30%) suggest that the proposed program would not be cost-effective. It is particularly important that  
this kind of finding is explicitly mentioned in both results and discussion sections to avoid potential bias towards  
positive base-case findings.

In contrast, if a study focuses discussion on very specific quantitative 
results in relation to its policy-related findings, then you should have 
concerns about whether uncertainty has been adequately addressed. 
For instance you might find a paper suggesting that following an 
intervention for pertussis, incidence peaks at 90 per 100,000 population 
in 2016 and then declines to below 30 per 100,000 population after 
2025. This sort of detail appears important but is essentially arbitrary – 
even the simplest of uncertainty analyses is likely to produce numbers 
that are substantially different to these estimates. While uncertainty 
doesn’t necessarily have to be addressed in terms of a balance of 
probabilities, it is important that it features just as prominently as 
quantitative statements of outcomes in the discussion section. The 
influence of programmatic factors like variation in coverage must also 
be clearly discussed since they can be influential in policy decision-
making. Models can also be used to provide guidance on the specific 
conditions under which a given intervention would be useful, or the 
circumstances under which negative consequences might occur, which 
may have implications for evidence gathering or program design. 

DISCUSSION 
Contextualisation (other models, current 
knowledge, limitations)
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Limitations 
Models are simplifications of real world systems, based on assumptions believed to be reasonable. Even complex 
individual-based models only include a fraction of potential factors relevant to transmission and it is therefore important 
to clarify and justify omissions from models. Explicit omissions are typically well described (for example, omission of a 
latent disease state), more implicit assumptions may be influential but not detailed. For instance in modelling the impact 
of varicella vaccination in the USA, links between varicella and zoster epidemiology were not explicitly considered and 
dismissed in limitations as outside the scope of the study. Later studies, by contrast, suggested the interaction was of 
critical importance to cost-effectiveness assessments. It’s important to ask when reading the limitations section whether 
plausible results are excluded due to the structure or assumptions used in a model. 

An example of a reasonably detailed limitations section is given in Box 2 below

Our predictions are sensitive to several key assumptions regarding varicella epidemiology and vaccination 
programmes. We assumed that receipt of the second dose was independent of the first which may 
lead to over-estimates of coverage with 51 dose of vaccine and hence impacts of two-dose programmes. 
Other important assumptions include setting the severity of breakthrough cases to be lower than 
wild-type infections (contributing one tenth as much in morbidity calculations), based loosely on post-
implementation data collected in the USA [27]. Other modelling analyses have also assumed low morbidity 
due to breakthrough infections [15] but data to establish the severity of breakthrough disease and whether 
the subsequent risk of zoster is identical to that following wild-type infection remain limited and will 
need to be revisited as vaccine programmes mature. Most modelling studies, including ours, assume 
lifelong immunity against varicella re-infection following natural infection [9, 12, 15] but the validity of 
this in the absence of frequent exposure remains to be evaluated. The absence of lifelong immunity would 
influence estimates of the reproductive number and also the projected impacts of vaccination. 

Our simulations apply the Hope-Simpson hypothesis [31] regarding protection against zoster from varicella 
exposure, which is supported by data from several other observational studies [32–34]. The Shingles 
Prevention Study [18] offers definitive evidence that boosting with a high-dose vaccine reduces the risk 
of zoster, but the effect of reduced exposure to varicella on zoster incidence at the population level is still 
uncertain, with both the incidence and duration of boosting unclear. A recent review of observational 
studies of boosting [35] suggests that immunological correlates of boosting show little evidence of an 
effect beyond 2 years post-exposure, indicating that endogenous boosting may be more important in 
sustained zoster protection than assumed in models. Validation of zoster trends also remains difficult 
due to limitations in the design and duration of current surveillance programmes. A recent retrospective 
study of Medicare claims conducted by Hales et al. [14] suggests a continuous rise in age-standardized 
zoster incidence in the over-65 s in the USA from the early 1990s, predating VZV immunization. Despite 
these uncertainties, we note that the zoster predictions in this study were insensitive to coverage and 
strategy changes. Minor limitations include the reliance on estimates from studies in other settings [23–25] 
regarding parental recall of their child’s varicella infection and vaccination history and limited data [9, 36] 
underpinning estimates of vaccine efficacy parameters, particularly for the second dose.

Box 2: source: Gao, Z et. al. Epidemiol Infect. 2015 143(7):1467-76. doi: 10.1017/S0950268814002222

As with most areas of public health, both epidemiology and the effect of interventions can vary strongly between 
settings. For this reason, care must be taken when the findings of a model configured around the circumstances relevant 
to one context are extrapolated to an unrelated setting. For instance, potential impacts of rotavirus vaccines in Australia 
should not be suggested as directly relevant to such a program in Indonesia, due to differences in the age-distribution 
of cases and morbidity and the potential for lower vaccine efficacy. More subtle issues, such as the pattern of bacterial 
carriage with age might lead to quite different population effects from conjugate pneumococcal vaccine in otherwise 
similar settings. More confidence in extrapolation can be gained if data from several settings have been compared to 
identify commonalities, and if extensive uncertainty and sensitivity analyses have been conducted. 
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Checklist box

Concept Recommendation Is this present and to 
what degree?

Purpose The rationale for using the model should be clearly described 
including discussion of complexity and relationship to prior models.

Relevance The scope and relevance of the modelling study to policy should 
be clearly described.

Paradigm The modelling paradigm (deterministic, stochastic, individual-
based etc.) should be clearly identified and supported through 
schematics, equations and model code where possible.

Stratification Key risk factors used to stratify model states (such as 
demographic or biological risk factors) or to distinguish risk in 
individuals should be clearly identified.

Vaccination Assumptions regarding vaccine interventions should be clearly 
articulated including parameters affecting coverage, efficacy 
and duration but also how the vaccine is assumed to protect 
individuals (prevents infection or just disease?).
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Concept Recommendation Is this present and to 
what degree?

Assumptions The nature of key assumptions and the evidence underpinning 
them should be described along with additional relevant details 
such as parameter tables and associated statistical analyses.

Uncertainty Uncertainty in inputs and assumptions should be explored and 
presented through some combination of sensitivity and scenario 
analysis. Presentation could take the form of figures or simply 
ranges defining uncertainty around key outcomes.

Comparison Some comparison with data should be undertaken both to refine 
uncertainty and as validation of model predictions. The latter 
is particularly important if the model is meant to be used for 
prediction (rather than estimation).

Discussion Model findings should be compared with relevant literature, data 
and evidence and differences given due consideration.

Limitations A detailed discussion of limitations associated with model design 
and inputs should be presented with guidance as to the likely 
effects of omissions.
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Key points
• Health economic evaluations in developed settings focus primarily on the incremental cost-effectiveness of new 

interventions in comparison to current practice.

• In relation to vaccines, herd immunity and dynamic changes in epidemiology can substantially change the outcomes 
from economic evaluations.

• Additional assumptions to look at carefully include the components of disease burden included in the analysis and 
assumptions around QALY benefits from mild but common disease.

Basics of economic evaluation in healthcare
Economic evaluations in healthcare seek to value changes in health gains and healthcare (and related) costs  
associated with changes in practice, such as the introduction of a new vaccine program. These evaluations seek to  
assess whether health gains associated with a new intervention provide value for money compared with current 
practice or other reasonable alternatives. Most economic evaluations in high-income countries focus on estimating 
the incremental cost per quality adjusted life year (QALY) gained and are expressed through the incremental cost-
effectiveness ratio (ICER). This measure implies a comparison between a proposed intervention and current practice  
(or no intervention) calculated as the

and presented as for instance $/QALY gained. As part of these calculations, costs and benefits that occur in the future 
are typically discounted back to their present day “value”: at present the PBAC advises discounting at 5% per year 
for both costs and benefits. In other countries the rates can differ and may be subject to change as has happened in 
recent years in the Netherlands and the UK. Choices around the discounting rate can have a large impact on the cost-
effectiveness of vaccination programs due to different timing of costs and benefits. Typically proposed new interventions 
are more costly and more effective than current practice (although this is not necessarily the case) and in most countries 
there is some notional range of an acceptable threshold ICER value, although an explicit threshold is not given in Australia. 

Key considerations for infectious diseases and vaccine programs
Infectious diseases raise some issues in relation to cost-effectiveness that are not necessarily present for other diseases. 
Here we highlight several issues of importance in evaluations of vaccine programs, which should be considered carefully 
when reading published studies:

1. Dynamic impacts on disease epidemiology
Herd immunity effects are a key reason for using infectious disease models to underpin economic evaluations of 
vaccine programs. However, it’s important to recognise that the herd impact is often complex and may vary with key 
model assumptions. Parameters such as the efficacy of the vaccine against infection and the duration of immunity both 
strongly influence the size and duration of herd immunity effects but are often not measured in clinical trials. Even if 
a dynamic model is not used in the cost-effectiveness analysis (e.g. most analysis of conjugate pneumococcal vaccine 
effectiveness), analyses should account for predictable consequences of a vaccine intervention, such as resultant 
changes in the characteristics of disease causing strains 

Health economic aspects 
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2. Determining disease burden for pathogens with non-specific  
disease syndromes
A number of significant infectious diseases cause a wide spectrum of clinical presentations, ranging from mild illness 
to death. In addition, the associated symptoms may be shared with a variety of other infectious and non-infectious 
causes. Conventional surveillance tends to underestimate the disease burden from such infections (e.g. influenza and 
rotavirus) with disease burden estimates relying on additional statistical analysis to infer “attributable disease”. For 
instance, influenza is not often accurately attributed as a cause of death, forcing reliance on the syndromic description 
of ‘influenza and pneumonia’ mortality for more realistic estimates of disease burden. Associated uncertainty in 
outcomes such as disease burden estimates and incremental cost-effectiveness, needs to be carefully represented when 
considering new vaccine programs when estimating the disease burden attributable to an infectious disease. 

A second area of concern is in relation to the assumed proportion of a disease syndrome that is attributable to a 
given pathogen. For instance, the assumed proportion of community acquired pneumonia that is assumed attributable 
to strains included in 13-valent conjugate pneumococcal vaccine can have a tremendous impacts on the QALY gains 
predicted from introducing an elderly program with this vaccine. 

3. Large QALY benefits derived from 
prevention of mild disease
New vaccines are often targeting infections that are 
common but where most disease is mild and may not 
involve significant health-care utilization. The impact in a 
cost-effectiveness calculation will then come through QALYs 
changes, that are estimated by the product of the duration 
of illness with the quality of life (QoL) score while ill and 
the number of such events prevented. A small QALY gain of 
0.01 applied to one million mild cases will produce a similar 
QALY estimate to prevention of 500 child deaths. Aside 
from whether this reflects society’s preferences, the impacts 
on mild disease often have a poor evidence base in terms of 
both the magnitude of the QALY score and the frequency of 
events (given these are typically not medically-attended). 

Presentation of methods and results
In addition to the comments in previous sections, economic 
evaluations should clearly tabulate model inputs, with 
base values and relevant ranges (and/or distributions) 
and sources. As economic evaluations are very important 
inputs to the policy arena, transparency is very important 
as is extensive assessment of uncertainty around key 
findings. At a minimum, this should include probabilistic 
sensitivity analysis but ideally should be accompanied 
by the use of scenarios to present the impact of critical 
assumptions around vaccine impact (such as duration of 
immunity). Additional tests of the robustness conclusions 
are also advisable, which might for example take the form of 
presenting worse and best case scenarios for the effect of 
an intervention and level terms with the main results.
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Acquisition: Infection of a host. 

Basic reproduction number (R0): The average number of secondary infections caused by a typical primary case in a fully 
susceptible population (i.e. with no prior experience of that infection).

Calibrate: Adjust model inputs so as to closely match model output to one or more sources of data.

Compartmental or state-based: A type of model commonly used in analysis of vaccine-preventable diseases, where the 
population of interest is separated into one of number of “disease states” considered relevant to infection with that 
pathogen.

Cost-effectiveness evaluations: Evaluations of the value for money provided by changes to health practice such as 
immunization programs.

Critical immunization threshold: An approximate value for the proportion of individuals that needs to be effectively 
immunized to achieve elimination of infection.

Deterministic: A process (such as infectious disease model) whereby for a given set of input values, exactly the same set 
of output values will always be returned.

Direct protection: The reduction in disease risk observed in immunised individuals compared with unimmunised 
individuals resulting from antibody or cellular immunity induced by vaccination.

Duration of immunity: The period of time for which an individual is protected against infection as a result of prior 
immunization or infection.

Dynamic: A process that changes in time but more specifically in the context of infectious disease models, where the 
population risk of infection can change as a result of interventions. Such models can capture herd immunity effects in 
contrast to “static” models that only consider individual-level benefits from interventions.

Efficacy against infectiousness: The efficacy of a vaccine against onward transmission resulting from reduced symptoms, 
peak pathogen load or duration of infectiousness, given breakthrough infection.

Efficacy against pathogenicity: The efficacy of a vaccine against symptomatic disease in an individual when infection 
occurs.

Efficacy against susceptibility: The efficacy of a vaccine against acquisition of infection occurring given exposure 
(analogous to sterilizing immunity).

Endemic: A disease that is continuously present in a population, often with relatively stable prevalence.

Epidemic: A disease showing exponential growth over typically a limited duration, before declining. 

Herd immunity: The level of collective immunity in a population, which can be influenced through interventions such as 
vaccination resulting in changes in infection prevalence and the potential for disease elimination.

Honeymoon effect: A description of the initial period of (large) reductions in disease incidence following vaccination, 
which may not be sustained in the longer term if vaccine coverage is below the critical immunity threshold.

Impact: Changes in infection or disease patterns through for example a vaccination program. This is typically measured 
through changes in incidence of infection or measures of more severe disease such as hospitalization and death.

Indirect protection: The extra protection afforded to individuals through herd immunity, reducing infection risk. A vaccine 
program that provides indirect protection will result in a lower prevalence of infection and disease in the unimmunised 
proportion of the population than was observed before vaccine introduction. 

Individual-based or agent-based: an approach to models, in which individuals are explicitly characterized, with the 
potential for greater detail in describing infection risks and the impact of interventions.

Monte-Carlo sampling: The process of repeatedly drawing values from a probability distribution for use in calculations. 
This approach is used in infectious disease modelling either in assessments of uncertainty or sensitivity, or in stochastic 
models as a means of determining the movement of the population between disease states.

Glossary
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Naïve: An individual who has not previously been exposed to an infection (or a vaccine against this infection) and as a 
result has no immunity against it.

Occam’s razor: The principle that explanation (or models) should not include more assumption than needed.

Ordinary differential equations: A branch of calculus that describes equations where a function is related to its 
derivatives. More specifically, this means that they are useful to describing physical and biological systems where 
the rate of change depends on the current state of the system. In relation to infectious disease models for instance, 
movement out of the susceptible compartment depends on the current prevalence of both infectious and susceptible 
individuals.

Parameter: A value that is used as input to a model, which typically has some empirical basis. For instance a key model 
parameter for measles transmission is the average duration of infectiousness.

Probability distributions: Functions or tables that define the probability of a given quantity taking one of an allowed 
range of values. Commonly applied distributions in relation to modelling parameters include Poisson distributions (count 
data such as the reproduction number), Gamma distributions (duration of infection) and log-normal distributions 
(relative risk of infection given vaccination) as indicated in Figure 6 below.

Reproduction number: The average number of secondary infections caused by a typical primary case in the population 
of interest, otherwise known as the ‘effective’ reproduction number. Unlike the ‘basic’ reproduction number, this value is 
influenced by the level of immunity in the population.

Resistant: A state of sterilising immunity, in which an individual is perfectly protected against acquisition of infection

State: A subgroup of the population associated with an important component of infection or disease.

Stochastic: A process (such as an infectious disease model) where outcomes vary according to pre-defined probability 
distributions.

Stratified: Refers to the division of the modelled population into subgroups. Stratification often relates to common 
epidemiological variables such as age and gender.

Transmission: The transfer of infection from one host to another.

WAIFW: Who acquires infection from whom. This refers to the notion of incorporating different rates of transmission 
between different population subgroups through a WAIFW matrix, often stratified by age.

Figure 6: Examples of probability distributions used for key parameters in models of vaccine preventable diseases.
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PRISM², the Centre for Research Excellence in Policy Relevant Infectious diseases Simulation and 
Mathematical Modelling, was established in late 2014 with funding support from the Australian 
National Health and Medical Research Council Centres of Research Excellence funding scheme.
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